A novel ensemble-based conceptual-data-driven approach for improved streamflow simulations

نویسندگان

چکیده

A novel ensemble-based conceptual-data-driven approach (CDDA) is developed where a data-driven model (DDM) used to “correct” the residuals from an ensemble of hydrological (HM) simulations. The CDDA respects processes via HM and it benefits DDM's ability simulate complex relationship between input variables. can accomodate any DDM, allowing for different configurations be tested. tested streamflow simulation in three Swiss catchments HM, HBV (Hydrologiska Byråns Vattenbalansavdelning), coupled with eight DDMs: Multiple Linear Regression, k Nearest Neighbours Second-Order Volterra Series Model, Artificial Neural Networks, two variants eXtreme Gradient Boosting (XGB) Random Forests (RF). proposed was able improve mean continuous ranked probability score by 16–29% over standalone HM. Since XGB RF demonstrated best performance, they are recommended simulating residuals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A Novel Charging Plan for PEVs Aggregator Based on Combined Market and Network Driven Approach

With the large-scale production of plug-in electric vehicles (PEVs), a new entity, the PEV fleet aggregator manages charging and discharging processes of the vehicles. The main objective of an individual aggregator in interaction with electricity markets is maximizing its profit. In this paper, the performance of this aggregator in day-ahead and real-time electricity markets, considering (a) cu...

متن کامل

A novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes

The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An impr...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

Real-Time Data Assimilation for Operational Ensemble Streamflow Forecasting

Operational flood forecasting requires that accurate estimates of the uncertainty associated with modelgenerated streamflow forecasts be provided along with the probable flow levels. This paper demonstrates a stochastic ensemble implementation of the Sacramento model used routinely by the National Weather Service for deterministic streamflow forecasting. The approach, the simultaneous optimizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Environmental Modelling and Software

سال: 2021

ISSN: ['1364-8152', '1873-6726']

DOI: https://doi.org/10.1016/j.envsoft.2021.105094